- commutative determinant
- мат.коммутативный определитель
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Determinant — This article is about determinants in mathematics. For determinants in epidemiology, see Risk factor. In linear algebra, the determinant is a value associated with a square matrix. It can be computed from the entries of the matrix by a specific… … Wikipedia
Cayley–Hamilton theorem — In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Hamilton) states that every square matrix over the real or complex field satisfies its own characteristic equation.More precisely; if A is… … Wikipedia
Matrix (mathematics) — Specific elements of a matrix are often denoted by a variable with two subscripts. For instance, a2,1 represents the element at the second row and first column of a matrix A. In mathematics, a matrix (plural matrices, or less commonly matrixes)… … Wikipedia
Discriminant — In algebra, the discriminant of a polynomial is an expression which gives information about the nature of the polynomial s roots. For example, the discriminant of the quadratic polynomial is Here, if Δ > 0, the polynomial has two real roots,… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Exterior algebra — In mathematics, the exterior product or wedge product of vectors is an algebraic construction generalizing certain features of the cross product to higher dimensions. Like the cross product, and the scalar triple product, the exterior product of… … Wikipedia
Quaternion — Quaternions, in mathematics, are a non commutative extension of complex numbers. They were first described by the Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three dimensional space. They find uses in both… … Wikipedia
Quasideterminant — Introduction= The quasideterminant is a replacement for the determinant for matrices with noncommutative entries. Example 2 imes2 quasideterminants are as follows::: left|egin{array}{cc} a {11} a {12} a {21} a {22} end{array} ight| {11} = a {11} … Wikipedia
General linear group — Group theory Group theory … Wikipedia
Algebraic K-theory — In mathematics, algebraic K theory is an important part of homological algebra concerned with defining and applying a sequence Kn(R) of functors from rings to abelian groups, for all integers n. For historical reasons, the lower K groups K0 and… … Wikipedia
Emmy Noether — Amalie Emmy Noether Born 23 March 1882(1882 03 23) … Wikipedia